A Matrix Representation Of The Quadratic Residue And Quadratic Non-Residue Classes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized quadratic residue codes

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...

متن کامل

Long Quadratic Residue Codes

A long standing problem has been to develop “good” binary linear block codes, C, to be used for error-correction. The length of the block is denoted n and the dimension of the code is denoted k. So in this notation C ⊆ GF (2) is a k-dimensional subspace. Another important parameter is the smallest weight of any non-zero codeword, d. This is related to error-correction because C can correct [d−1...

متن کامل

Quadratic Residue Codes and Divisibility

Quadratic residue codes are some of the brightest gems of coding theory. Their facets reeect many topics: quadratic residues and reciprocity; multiply transitive and sporadic simple groups; lattices; group representations; and block designs and Hadamard matrices. They provide the only perfect codes for prime-power sized alphabets correcting more than one error, and some are prototypes of extrem...

متن کامل

Quadratic Residue Covers for Certain Real Quadratic Fields

Let A„{a, b) = {ban+(a-l)/b)2+4an with n > 1 and ¿>|a-l . If W is a finite set of primes such that for each n > 1 there exists some q £W for which the Legendre symbol {A„{a, b)/q) ^ -1 , we call <£ a quadratic residue cover (QRC) for the quadratic fields K„{a, b) = Q{^jA„{a, b)). It is shown how the existence of a QRC for any a, b can be used to determine lower bounds on the class number of K„{...

متن کامل

On quadratic residue codes and hyperelliptic curves

For an odd prime p and each non-empty subset S ⊂ GF (p), consider the hyperelliptic curve XS defined by y = fS(x), where fS(x) = Q a∈S(x− a). Using a connection between binary quadratic residue codes and hyperelliptic curves over GF (p), this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications, Faculty Of Science, University of Ankara Series A1Mathematics and Statistics

سال: 1973

ISSN: 1303-5991

DOI: 10.1501/commua1_0000000629